Structure of the Low-Temperature Variety of Calcium Sodium Orthophosphate, NaCaPO₄

By M. Ben Amara, M. Vlasse,* G. Le Flem and P. Hagenmuller

Laboratoire de Chimie du Solide du CNRS, 351 cours de la Libération, 33405 Talence CEDEX, France

(Received 22 October 1982; accepted 22 June 1983)

Abstract. $M_r = 158.0$, orthorhombic, $Pn2_1a$, a = 20.397 (10), b = 5.412 (4), c = 9.161 (5) Å, V = 1011.27 Å³, Z = 12, $D_m = 3.12$ (5), $D_x = 3.12$ Mg m⁻³, λ (Mo K α) = 0.70942 Å, $\mu = 2.24$ mm⁻¹, F(000) = 936, T = 295 K. Final R = 3.8% for 1234 observed reflections. The structure is related to that of β -K₂SO₄ with some orientational changes of the [PO₄] tetrahedra. It is made up of strings of Na atoms and [PO₄] tetrahedra alternating with strings of Ca atoms.

Introduction. A great number of orthophosphates have a high-temperature form with the hexagonal α -K₂SO₄type structure. Let us quote: NaMPO₄ (M = Ca, Sr, Ba) and Na₃Ln(PO₄)₂ (Ln = rare earth) (Klement & Kresse, 1961; Vlasse, Parent, Salmon, Le Flem & Hagenmuller, 1980; Kolsi, Quarton & Freundlich, 1981).

For the $Na_3Ln(PO_4)_2$ compounds the hightemperature form transforms into a low-temperature variety by cationic ordering in the strings containing the Na^+ and rare-earth ions, accompanied by a rotation of the $[PO_4]$ tetrahedra to accommodate the new coordination requirements.

The study of the low-temperature phase of NaBaPO₄ does not reveal a surperstructure, but confirms a very close relationship to the α -K₂SO₄-type structure, although its symmetry seems to be monoclinic (Kolsi *et al.*, 1981).

The existence of low-temperature varieties of $NaCaPO_4$ and $NaSrPO_4$ has been previously reported, but no precise information has been given concerning their structural characteristics (Klement & Kresse, 1961; Bredig, 1942; Paques-Ledent, 1972).

Bredig (1942) had proposed for NaCaPO₄ a β -K₂SO₄-type structure, but Engel & Aalen (1976) observed superlattice reflections on the powder pattern and indexed them by isotypy with α'_L -Ca₂SiO₄, the cell parameters of which are related to those of β -K₂SO₄ by the following relations: $a \simeq 2c_{\beta$ -K₂SO₄, $b \simeq 2b_{\beta$ -K₂SO₄, $c \simeq a_{\beta$ -K₂SO₄.

In order to clarify the structural situation for low-temperature $NaCaPO_4$ and to provide information

for better understanding of this class of materials, we decided to carry out a detailed structural determination.

Experimental. Compound prepared from a stoichiometric mixture of sodium carbonate, calcium carbonate and ammonium phosphate. Initial mixture first heated at 673 K under a nitrogen stream, then at 1223 K in air. Single crystals grown by cooling, from 1073 to 473 K at a rate of 10 Kh⁻¹, a mixture of 2 moles NaCaPO₄ and 5 moles Na_2MoO_4 , the latter playing the role of a flux. Crystals separated from flux by washing in boiling water. D_m measured by pycnometry. Crystal: rectangular block, $0.08 \times 0.15 \times 0.03$ mm fixed along **b**. Weissenberg photographs indicated orthorhombic symmetry with the extinction condition: hk0, h = 2n + 1and 0kl, k + l = 2n + 1, compatible with space group Pn2₁a or Pnma. 30 powder-pattern general reflections used for refinement of cell parameters ($a \simeq 3a_{\beta-K_2SO_4}$, $b \simeq b_{\beta - K_2 SO_4}$, $c \simeq c_{\beta - K_2 SO_4}$). Enraf-Nonius CAD-3 automatic diffractometer. Lp and absorption corrections applied ($\mu R_{\text{max}} = 0.17$). $2\theta_{\text{max}} = 80^{\circ}$. h 0-30, k 0-9, l 0-16. Three standard reflections controlled for each 50 reflections measured, intensity variation $\leq 4\%$ during period of measurement. 1490 total reflections, 1234 observed $[I > 3\sigma(I)]$. Deconvolution of the three-dimensional Patterson diagram in space group $Pn2_1a$ gave a satisfactory initial solution. A second harmonic generation test carried out on a powder sample proved to be positive and confirms the choice for this non-centrosymmetric space group (Jerphagnon, 1972). Refinement on F of the atomic parameters and anisotropic temperature factors using a full-matrix least-squares algorithm (ORFLS, Busing, Martin & Levy, 1962) led to a final R of 3.8%, ratio of data to refined variables $\simeq 7$, w = 1. $(\Delta/\sigma)_{av} = 0.3$. Residual electron density peaks $<0.5 \text{ e} \text{ Å}^{-3}$. No correction for secondary extinction. Atomic scattering factors from McMaster, Ker Del Grande, Mallet & Hubbel (1969).

Discussion. The final atomic coordinates are given in Table 1, interatomic distances and angles in Table 2.⁺

^{*} Present address: Polytechnic Institute of New York, 333 Jay Street, Brooklyn, NY 11201, USA.

⁺ Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38679 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU. England.

^{© 1983} International Union of Crystallography

CALCIUM SODIUM ORTHOPHOSPHATE

Table 2 (cont.)

FOL	<u></u>		-1	
selv	Calcium and sodi	um-oxygen polyn	$N_{\alpha}(1) = O(2)$	2 60 (2)
2	Ca(1) = O(2)	2.48(2)	Na(1) = O(2)	2.09(2)
	Ca(1) = O(3)	$2 \cdot 39(2)$	Na(1) = O(2) Na(1) = O(2)	2.75(2)
	Ca(1) = O(4)	2.30(2)	Na(1) - O(2)	2.55(2)
	Ca(1) = O(9)	2.41(2)	Na(1) = O(5)	2.00(2)
	Ca(1) = O(9)	2.59(2)	Na(1) = O(5)	2.33(2)
opic	Ca(1) - O(10)	2.51 (2)	Na(1) - O(12)	2.53 (2)
-	Ca(1) - O(11)	2.53 (2)	Na(1) = O(3)	3.13 (2)
	Ca(1)O(12)	2.39 (2)	Na(1) - O(4)	3.01 (2)
			Na(1) - O(4)	2.80 (2)
			Na(1) - O(11)	3.04 (2)
	Ca(2)-O(1)	2.79 (2)	Na(2)–O(1)	2.31 (2)
	Ca(2)-O(3)	2.45 (2)	Na(2)-O(6)	2.43 (2)
1 ⁴)	Ca(2)–O(4)	2.40 (2)	Na(2)–O(7)	2.56 (2)
(10)	Ca(2)O(5)	2.47 (2)	Na(2)-O(8)	2.50 (2)
12)	Ca(2)-O(6)	2.56 (2)	Na(2)-O(10)	2.65 (2)
16)	Ca(2) - O(7)	2.43 (2)	Na(2)-O(11)	2.80 (2)
(36)	Ca(2)O(8)	2.28 (2)	Na(2) - O(6)	2.98 (2)
(40)	Ca(2) - O(10)	2.46 (2)	Na(2)-O(7)	2.90 (2)
(37)			Na(2)-O(8)	3.01 (2)
(19)			Na(2)-O(12)	3.25 (2)
(16)	$C_{0}(3) = O(1)$	2.42 (2)	$N_{2}(3) = O(3)$	2.78 (2)
(14)	$C_{a}(3) = O(1)$	2.62 (2)	$N_{2}(3) = O(4)$	2.73(2)
(48)	$C_{a}(3) = O(2)$	2.66(2)	$N_{2}(3) = O(4)$	2.72(2)
(42)	$C_{a}(3) = O(3)$	2.46(2)	$N_{2}(3) - O(0)$	2.72(2)
(41)	$C_{2}(3) = O(0)$	2.50(2)	Na(3) = O(10)	2.54(2)
(40)	$C_{2}(3) = O(8)$	2.58(2)	$N_{2}(3) = O(11)$	2.51(2)
(41)	$C_{a}(3) = O(11)$	2.39(2)	Na(3) = O(7)	3.27(2)
(50)	$C_{2}(3) = O(12)$	2,37(2)	Na(3) = O(8)	2.85(2)
(54)	00(0) 0(12)	2 0 . (2)	Na(3) = O(10)	2.88(2)
(51)			Na(3) = O(12)	2.83(2)
(49)				2 00 (2)
(41)	Cation-cation di	stances		
(59)	Ca(1)-Ca(2)	3.502 (6)	Ca(1)-Na(3)	3.58 (1)
(51)	Ca(1)-Ca(3)	3.502 (7)	Ca(1)-Na(3)	3.34 (1)
	Ca(2)–Ca(3)	3.535 (8)	Ca(2)-Na(1)	3.42 (1)
	Na(1)–Na(1)	3.78 (3)	Ca(2)-Na(2)	3.54 (2)
for	Na(2)-Na(3)	3.74 (2)	Ca(2)-Na(3)	3.57 (1)
, ,0,		2 50 (1)	Ca(3) - Na(1)	3.47 (1)
	Ca(1) - Na(1)	3.58(1)	Ca(3) - Na(2)	3.43 (2)
	Ca(1) - Na(1)	3.62(1)	Ca(3) - Na(2)	3.53(2)
	Ca(1) - Na(1)	3.00(1)	Ca(3) - Na(3)	3.57(1)
	× t	г –		1
	_۲ هـ			1
		VY		\sim
		Ň		
				ノエ
	Ę	Δ_{N}	4007	
	E			. 1
			$i \vee ($) i
	/	\frown		ノート
	()0		
		\sim N7		
	7) (
	\	PO4 bo	04(43) (426)	
		\vee H	03(0) (P1/25)	Ca3021) I
(9)			Na 3(24) V	$\sum_{i=1}^{n}$
(11)			01(28)) :
(10)		06(17)	08(47) N. 2721	
(11)		P2000	707101)	a2(23)
(10)		\mathbb{N}	VA (\sum
(10)		05(28))
(10)		1 · ·	011(00)	

related β -K₂SO₄ structure is reported in Fig. 2.

Table 1. Atomic coordinates and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

 $B_{\rm eq} = \frac{4}{3} \sum_i \sum_j \beta_{ij} a_i^* a_j^*.$

	r	v	z	$B_{eq}(\dot{A}^2)$
$C_{a}(1)$	0.0011(3)	0.2600	0.7011(7)	0.46(10)
Ca(2)	0.1674(2)	0.2278(7)	0.7943(8)	0.55(12)
Ca(3)	0.3356(3)	0.2051(6)	0.7023 (8)	0.57 (16)
Na(1)	0.0559 (7)	0.2624 (21)	0.0719 (15)	1.14 (36)
Na(2)	0.2216 (8)	0.2212(21)	0-4277 (18)	1.58 (40)
Na(3)	0.3920 (6)	0.2368 (18)	0.0704 (15)	1.02 (37)
P(1)	0.4071 (4)	0.2539 (13)	0.4144(10)	0.50 (19)
P(2)	0.2404 (4)	0.2226 (12)	0.0819 (9)	0.36 (16)
P(3)	0.0762 (3)	0.2238 (12)	0.4097 (9)	0.22 (14)
O(1)	0.3338 (6)	0.2761 (27)	0.4417 (19)	1.34 (48)
O(2)	0.4453 (9)	0.2588 (27)	0.5580 (20)	1.65 (42)
O(3)	0.4241 (8)	0.0140 (25)	0.3348 (17)	0.93 (41)
O(4)	0.4289 (9)	0.4769 (21)	0-3190 (19)	0.45 (40)
O(5)	0.1698 (6)	0.2758 (25)	0.0626 (17)	0.80 (41)
O(6)	0.2750 (11)	0.1705 (26)	0.9330 (22)	1.11 (50)
O(7)	0.2531 (10)	0.0093 (28)	0.1886 (22)	1.21 (54)
O(8)	0.2717 (9)	0.4650 (26)	0.1547 (20)	1.43 (51)
O(9)	0.0011 (10)	0.1720 (25)	0-4434 (17)	1.35 (49)
O(10)	0.1071 (9)	0.2686 (27)	0.5625 (20)	1.28 (41)
O(11)	0.1039 (10)	0.9974 (31)	0.3441 (23)	1.39 (59)
O(12)	0.0836 (10)	0-4553 (26)	0.3156 (22)	0.52 (51)

Table 2. Interatomic distances (Å) and angles (°) for NaCaPO₄

[PO.] tetrahedra			
P(1) - O(1)	1.52 (2)	O(1) - O(2)	2.51(2)
P(1) - O(2)	1.53 (2)	O(1) - O(3)	2.52 (2)
P(1) - O(3)	1.53(2)	O(1) - O(4)	2.49 (2)
P(1) - O(4)	1.56 (2)	O(2) - O(3)	2.48 (2)
$\langle \mathbf{P}(1) - \mathbf{O} \rangle$	1.53	O(2)O(4)	2.51(2)
<u> </u>		O(3)O(4)	2.51 (2)
P(2)O(5)	1.48 (2)	O(5)–O(6)	2.52 (2)
P(2) - O(6)	1.56 (2)	O(5)O(7)	2.51 (2)
P(2)O(7)	1.54 (2)	O(5)O(8)	2.47 (2)
P(2)O(8)	1.61 (2)	O(6)O(7)	2.54 (3)
⟨P(2)O⟩	1.55	O(6)O(8)	2.58 (3)
		O(7)–O(8)	2.51 (3)
P(3)O(9)	1.59 (2)	O(9)–O(10)	2.48 (2)
P(3)-O(10)	1.55 (2)	O(9)-O(11)	2.47 (3)
P(3)-O(11)	1.48 (2)	O(9)-O(12)	2.56 (3)
P(3)-O(12)	1.53 (2)	O(10)-O(11)	2.48 (3)
⟨ P (3)–O⟩	1.54	O(10)O(12)	2.52 (3)
		O(11)–O(12)	2.53 (3)
O(1) - P(1) - O(2)	111.0 (9)	O(9) - P(3) - O(10)	104.1 (9)
O(1) - P(1) - O(3)	111.6 (9)	O(9) - P(3) - O(11)	107.5 (11)
O(1) - P(1) - O(4)	108.2 (9)	O(9) - P(3) - O(12)	110.5 (10)
O(2) - P(1) - O(3)	108.1 (9)	O(10) - P(3) - O(11)) 109.9(11)
O(2) - P(1) - O(4)	108.9 (9)	O(10) - P(3) - O(12)) 109-9 (10)
O(3) - P(1) - O(4)	109.0 (9)	O(11) - P(3) - O(12)) 114.4 (10)
$\langle \mathbf{O} - \mathbf{P}(1) - \mathbf{O} \rangle$	109.5 (9)	$\langle O-P(3)-O \rangle$	109-4 (10)
O(5) - P(2) - O(6)	111.8 (10)		
O(5) - P(2) - O(7)	112.8 (10)		
O(5) - P(2) - O(8)	106.1 (9)		
O(6) - P(2) - O(7)	110.1 (10)		
O(6) - P(2) - O(8)	109.4 (9)		
O(7) - P(2) - O(8)	106.4 (9)		
⟨O−P(2)−O⟩	109-4 (10)		

Fig. 1. Projection of half a unit cell on the (010) plane of the NaCaPO₄ lattice.

09(17)

0027)

à 1(26) |

Fig. 2. Projection of a unit cell on the (010) plane of the β -K₂SO₄ lattice.

The structure can be most easily described as a superstructure of β -K₂SO₄. It is made up of two types of strings along the a axis. String A consists of alternating $[PO_4]$ tetrahedra and Na atoms. String B is made up of only Ca atoms. The major difference between NaCaPO₄ and β -K₂SO₄ is the occurrence of three different orientations adopted here by the three independent [PO₄] tetrahedra. This gives rise to different coordination polyhedra for the three Ca and Na atoms and leads to the tripling of the $a_{\beta-K}$ SQ. parameter.

The Ca atoms are found in an eightfold coordination, while the Na atoms are sixfold-coordinated if we consider distances less than 2.8 Å or tenfold-coordinated if distances up to 3.3 Å are taken into account.

The average P-O distances in the $[PO_4]$ tetrahedra fall between 1.533 and 1.545 Å. They are in good agreement with those found for $NaCd_4(PO_4)_3$ (Ben Amara, Olazcuaga, Le Flem & Vlasse, 1979), NaMg₄-(PO₄)₃ (Ben Amara, Vlasse, Olazcuaga, Le Flem & Hagenmuller, 1983), NaBaPO₄ (Kolsi et al., 1981), which range from 1.522 to 1.549 Å. The average tetrahedral angles are in the range 109.4 to 109.5°.

The structural determination of NaCaPO₄ provides one more link in the chain of structures derived from the β -K₂SO₄ or the glaserite type and having the general formula $A_x B_y (XO_4)_{(x+y)/2}$. This shows the ability of the $[XO_4]$ tetrahedra to change their orientation so as to accommodate the coordination requirements of the cations.

This structural type is certainly isotypic with the orthorhombic paraelectric phase of K_2SeO_4 , which exists between 93 and 129.5 K (Ohama, 1974). As a consequence ferroelectric properties may be expected.

References

- BEN AMARA, M., OLAZCUAGA, R., LE FLEM, G. & VLASSE, M. (1979). Acta Cryst. B35, 1567-1569.
- BEN AMARA, M., VLASSE, M., OLAZCUAGA, R., LE FLEM, G. & HAGENMULLER, P. (1983). Acta Cryst. C39, 936-939.
- BREDIG, M. A. (1942). J. Phys. Chem. 46, 747-764.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- ENGEL, G. & AALEN, A. (1976). Neues Jahrb. Mineral. Abh. 127, 197-211.
- JERPHAGNON, J. (1972). Bull. Soc. Fr. Minéral. Cristallogr. 95, 262-267.
- KLEMENT, R. & KRESSE, P. (1961). Z. Anorg. Allg. Chem. 310, 53-68.
- KOLSI, A. W., QUARTON, M. & FREUNDLICH, W. (1981). J. Solid State Chem. 36, 107-111.
- MCMASTER, W. H., KER DEL GRANDE, N., MALLET, J. H. & HUBBEL, J. H. (1969). Compilation of X-ray Cross-sections. Natl. Bur. Stand. UCRL-50174, Sec. II, Rev. 1.
- Онама, N. (1974). Mater. Res. Bull. 9, 283-288.
- PAQUES-LEDENT, M. T. (1972). C. R. Acad. Sci. 274, 1998-2000.
- VLASSE, M., PARENT, C., SALMON, R., LE FLEM, G. & HAGENMULLER, P. (1980). J. Solid State Chem. 35, 318-324.

Acta Cryst. (1983). C39, 1485-1488

Structure d'une Deuxième Variété d'Hexathiodiphosphate(IV) d'Argent, Ag₄P₂S₆. **Comparaison des Structures des Deux Variétés**

PAR P. TOFFOLI, P. KHODADAD ET N. RODIER

Laboratoire de Chimie Minérale, Faculté des Sciences Pharmaceutiques et Biologiques, rue J.-B. Clément, 92290 Châtenay-Malabry, France

(Reçu le 6 septembre 1982, accepté 5 juillet 1983)

F(000) = 1256, Abstract. $M_r = 685 \cdot 8$, orthorhombic, $P2_12_12_1$, a = $0.7107 \text{ Å}, \quad \mu = 9.1 \text{ mm}^{-1},$ T =13.901 (7), b = 11.073 (6), c = 6.303 (4) Å, V =294 (1) K, R = 0.051 for 1048 independent reflections 970 (2) Å³, Z = 4, $D_x = 4.69$ Mg m⁻³, Mo Ka, $\lambda =$ $[I > 2\sigma(I)]$. This variety is isostructural with Ag₄P₂Se₆. 0108-2701/83/111485-04\$01.50

© 1983 International Union of Crystallography